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CHAPTER EIGHT 
 

CORRELATION AND REGRESSION 
 

 Correlation and regression are statistical methods that are commonly used in the medical literature to 
compare two or more variables. Although frequently confused, they are quite different. Correlation measures 
the association between two variables and quantitates the strength of their relationship. Correlation evaluates 
only the existing data. Regression uses the existing data to define a mathematical equation which can be 
used to predict the value of one variable based on the value of one or more other variables and can therefore 
be used to extrapolate between the existing data. The regression equation can therefore be used to predict 
the outcome of observations not previously seen or tested. 
 
CORRELATION 
 

 Correlation provides a numerical measure of the linear or “straight-line” relationship between two 
continuous variables X and Y. The resulting correlation coefficient or “r value” is more formally known as 
the Pearson product moment correlation coefficient after the mathematician who first described it. X is 
known as the independent or explanatory variable while Y is known as the dependent or response 
variable. A significant advantage of the correlation coefficient is that it does not depend on the units of X and 
Y and can therefore be used to compare any two variables regardless of their units. 
 
 An essential first step in calculating a correlation coefficient is to plot the observations in a “scattergram” 
or “scatter plot” to visually evaluate the data for a potential relationship or the presence of outlying values. It is 
frequently possible to visualize a smooth curve through the data and thereby identify the type of relationship 
present. The independent variable is usually plotted on the X-axis while the dependent variable is plotted on 
the Y-axis. A “perfect” correlation between X and Y (Figure 8-1a) has an r value of 1 (or -1). As X changes, Y 
increases (or decreases) by the same amount as X, and we would conclude that X is responsible for 100% of 
the change in Y. If X and Y are not related at all (i.e., no correlation) (Figure 8-1b), their r value is 0, and we 
would conclude that X is responsible for none of the change in Y. 
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Figure 8-1: Types of Correlations 
 
 If the data points assume an oval pattern, the r value is somewhere between 0 and 1, and a moderate 
relationship is said to exist. A positive correlation (Figure 8-1c) occurs when the dependent variable 
increases as the independent variable increases. A negative correlation (Figure 8-1d) occurs when the 
dependent variable increases as the independent variable decreases or vice versa. If a scattergram of the 
data is not visualized before the r value is calculated, a significant, but nonlinear correlation (Figure 8-1e) 
may be missed. Because correlation evaluates the linear relationship between two variables, data which 
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assume a nonlinear or curved association will have a falsely low r value and are better evaluated using a 
nonlinear correlation method. 
 
 Perfect correlations (r value = 1 or -1) are rare, especially in medicine where physiologic changes are due 
to multiple interdependent variables as well as inherent random biologic variation. Further, the presence of a 
correlation between two variables does not necessarily mean that a change in one variable necessarily 
causes the change in the other variable. Correlation does not necessarily imply causation. 
 
 The square of the r value, known as the coefficient of determination or r2, describes the proportion of 
change in the dependent variable Y which is said to be explained by a change in the independent variable X. 
If two variables have an r value of 0.40, for example, the coefficient of determination is 0.16 and we state that 
only 16% of the change in Y can be explained by a change in X. The larger the correlation coefficient, the 
larger the coefficient of determination, and the more influence changes in the independent variable have on 
the dependent variable. 
 
 The calculation of the correlation coefficient is mathematically complex, but readily performed by most 
computer statistics programs. Correlation utilizes the t distribution to test the null hypothesis that there is no 
relationship between the two variables (i.e., r = 0). As with any t-test, correlation assumes that the two 
variables are normally distributed. If one or both of the variables is skewed in one direction or another, the 
resulting correlation coefficient may not be representative of the data and the result of the t test will be invalid. 
If the scattergram of the data does not assume some form of elliptical pattern, one or both of the variables is 
probably skewed (as in Figure 8-1e). The problem of non-normally distributed variables can be overcome by 
either transforming the data to a normal distribution or using a non-parametric method to calculate the 
correlation on the ranks of the data (see below). 
 
 As with other statistical methods, such as the mean and standard deviation, the presence of a single 
outlying value can markedly influence the resulting r value, making it appear artificially high. This can lead to 
erroneous conclusions and emphasizes the importance of viewing a scattergram of the raw data before 
calculating the correlation coefficient. Figure 8-2 illustrates the correlation between right ventricular end-
diastolic volume index (RVEDVI) (the dependent variable), and cardiac index (the independent variable). The 
correlation coefficient for all data points is 0.72 with the data closely fitting a straight line (solid line). From 
this, we would conclude that 52% (r2 = 0.52) of the change in RVEDVI can be explained by a change in 
cardiac index. There is, however, a single outlying data point on this scattergram, and it has a significant 
impact on the correlation coefficient. If this point is excluded from the data analysis, the correlation coefficient 
for the same data is 0.50 (dotted line) and the coefficient of determination (r2) is only 0.25. Thus, by excluding 
the one outlying value (which could easily be a data error), we see a 50% decrease in the calculated 
relationship between RVEDVI and cardiac index. Outlying values can therefore have a significant impact on 
the correlation coefficient and its interpretation and their presence should always be noted by reviewing the 
raw data. 
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Figure 8-2: Effect of outlying values on correlation 
 
FISHER’S Z TRANSFORMATION 
 

 A t test is used to determine whether a significant correlation is present by either accepting or rejecting 
the null hypothesis (r = 0). When a correlation is found to exist between two variables (i.e., the null hypothesis 
is rejected), we frequently wish to quantitate the degree of association present. That is, how significant is the 
relationship? Fisher’s z transformation provides a method by which to determine whether a correlation 
coefficient is significantly different from a minimally acceptable value (such as an r value of 0.50). It can also 
be used to test whether two correlation coefficients are significantly different from each other. 
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 For example, suppose we wish to compare cardiac index (CI) with RVEDVI and pulmonary artery 
occlusion pressure (PAOP) in 100 patients to determine whether changes in RVEDVI or PAOP correlate 
better with changes in CI. Assume the calculated correlation coefficient between CI and RVEDVI is 0.60, and 
that between CI and PAOP is 0.40. An r value of 0.60 is clearly better than an r value of 0.40, but is this 
difference significant? We can use Fisher’s z transformation to answer this question. 
 
 The CI, RVEDVI, and PAOP data that were used to calculate the correlation coefficients all have different 
means and standard deviations and are measured on different scales. Thus, before we can compare these 
correlation coefficients, we must first transform them to the standard normal z distribution (such that they 
both have a mean of 0 and standard deviation of 1). This can be accomplished using the following formula or 
by using a z transformation table (available in most statistics textbooks): 
 

z(r) 0.5 ln 1 r
1 r

= ⋅
+
−

 
 

where r = the correlation coefficient and z(r) = the correlation 
coefficient transformed to the normal distribution 

 
After transforming the correlation coefficients to the normal (z) distribution, the following equation is used to 
calculate a critical z value, which quantitates the significance of the difference between the two correlation 
coefficients (the significance of the critical value can be determined in a normal distribution table): 
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If the number of observations (n) is different for each r value, the equation takes the form: 
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Using these equations for the above example, (where r(CI vs RVEDVI) =0.60 and r(CI vs PAOP) =0.40), z(CI vs RVEDVI) 
=0.693 and z(CI vs PAOP) =0.424. The critical value of z which determines whether 0.60 is different from 0.40 is 
therefore: 
 

z 0.693 0.424
1/ (100 3)

0.269
0.1

2.64=
−

−
= =  

 

From a normal distribution table (found in any statistics textbook), a critical value of 2.64 is associated with a 
significance level or p value of 0.008. Using a p value of < 0.05 as being significant, we can state that the 
correlation between CI and RVEDVI is statistically greater than that between CI and PAOP. 
 
 Confidence intervals can be calculated for correlation coefficients using Fisher’s z transformation. The 
transformed correlation coefficient, z(r), as calculated above, is used to derive the confidence interval. In 
order to obtain the confidence interval in terms of the original correlation coefficient, however, the interval 
must then be transformed back. For example, to calculate the 95% confidence interval for the correlation 
between CI and RVEDVI (r=0.60, z(r)=0.693), we use a modification of the standard confidence interval 
equation: 
 

z(r) 1.96 1/ (n 3)± × −  
 

where z(r) = the transformed correlation coefficient, and 1.96 
= the critical value of z for a significance level of 0.05 

 
 
Substituting for z(r) and n: 
 

0.693 (1.96)(0.1)
0.693 0.196

±
±

 

 0.497 to 0.889 
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Converting the transformed correlation coefficients back results in a 95% confidence interval of 0.46 to 0.71. 
As the r(CI vs PAOP) of 0.40 resides outside these confidence limits, we confirm our conclusion that a correlation 
coefficient of 0.60 is statistically different from one of 0.40 in this patient population. 
 
CORRELATION FOR NON-NORMALLY DISTRIBUTED DATA 
 

 As discussed above, situations arise in which we wish to perform a correlation, but one or both of the 
variables is non-normally distributed or there are outlying observations. We can transform the data to a 
normal distribution using a logarithmic transformation, but the correlation we then calculate will actually be the 
correlation between the logarithms of the observations and not that of the observations themselves. Any 
conclusions we then make will be based on the transformed data and not the original data. 
 
 Another method is to perform the correlation on the ranks of the data using Kendall’s (tau) or 
Spearman’s (rho) rank correlation. Both are non-parametric methods in which the data is first ordered from 
smallest to largest and then ranked. The correlation coefficient is then calculated using the ranks. Rank 
correlations can also be used in the situation where one wishes to compare ordinal or discrete variables 
(such as live versus die, disease versus no disease) with continuous variables (such as cardiac output). 
These rank correlation methods are readily available on most computer statistics packages. The traditional 
Pearson correlation coefficient is a stronger statistical test, however, and should be used if the data is 
normally distributed. 
 
REGRESSION 
 

 Regression analysis mathematically describes the dependence of the Y variable on the X variable and 
constructs an equation which can be used to predict any value of Y for any value of X. It is more specific and 
provides more information than does correlation. Unlike correlation, however, regression is not scale 
independent and the derived regression equation depends on the units of each variable involved. As with 
correlation, regression assumes that each of the variables is normally distributed with equal variance. In 
addition to deriving the regression equation, regression analysis also draws a line of best fit through the data 
points of the scattergram. These “regression lines” may be linear, in which case the relationship between the 
variables fits a straight line, or nonlinear, in which case a polynomial equation is used to describe the 
relationship. 
 
 Regression (also known as simple regression, linear regression, or least squares regression) fits a 
straight line equation of the following form to the data: 
 

Y = a + bX 
 

where Y is the dependent variable, X is the single independent variable, a is the Y-intercept of the 
regression line, and b is the slope of the line (also known as the regression coefficient). 
 

 Once the equation has been derived, it can be used to predict the change in Y for any change in X. It can 
therefore be used to extrapolate between the existing data points as well as predict results which have not 
been previously observed or tested.  
 
 A t test is utilized to ascertain whether there is a significant relationship between X and Y, as in 
correlation, by testing whether the regression coefficient, b, is different from the null hypothesis of zero (no 
relationship). If the correlation coefficient, r, is known, the regression coefficient can be derived as follows: 
 

b r
standard deviation
standard deviation

Y

X

=  

 The regression line is fitted using a method known as “least squares” which minimizes the sum of the 
squared vertical distances between the actual and predicted values of Y. Along with the regression equation, 
slope, and intercept, regression analysis provides another useful statistic: the standard error of the slope. 
Just as the standard error of the mean is an estimate of how closely the sample mean approximates the 
population mean, the standard error of the slope is an estimate of how closely the measured slope 
approximates the true slope. It is a measure of the “goodness of fit” of the regression line to the data and is 
calculated using the standard deviation of the residuals. A residual is the vertical distance of each data point 
from the least squares fitted line (Figure 8-3). 
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Figure 8-3: Residuals with least squares fit regression line 
 
 Residuals represent the difference between the observed value of Y and that which is predicted by X 
using the regression equation. If the regression line fits the data well, the residuals will be small. Large 
residuals may point to the presence of outlying data which, as in correlation, can significantly affect the 
validity of the regression equation.  
 
 The steps in calculating a regression equation are similar to those for calculating a correlation coefficient. 
First, a scattergram is plotted to determine whether the data assumes a linear or nonlinear pattern. If outliers 
are present, the need for nonlinear regression, transformation of the data, or non-parametric methods should 
be considered. Assuming the data are normally distributed, the regression equation is calculated. The 
residuals are then checked to confirm that the regression line fits the data well. If the residuals are high, the 
possibility of non-normally distributed data should be reconsidered. 
 
 When reporting the results of a regression analysis, one should report not only the regression equation, 
regression coefficients, and their significance levels, but also the standard deviation or variance of each 
regression coefficient and the variance of the residuals. A common practice is to “standardize” the regression 
coefficients by converting them to the standard normal (z) distribution. This allows regression coefficients 
calculated on different scales to be compared with one another such that conclusions can be made 
independent of the units involved. Confidence bands (similar to confidence intervals) can also be calculated 
and plotted along either side of the regression line to demonstrate the potential variability in the line based on 
the standard error of the slope. 
 
MULTIPLE LINEAR REGRESSION 
 

 Multiple linear regression is used when there is more than one independent variable to explain changes 
in the dependent variable. The equation for multiple linear regression takes the form: 
 

Y = a + b1X1 + b2X2 + ... + bnXn 
 

where a = the Y intercept, and b1 through bn are the regression coefficients for each of the 
independent variables X1 through Xn. 

 
 The dependent variable Y is thus a “weighted average” based on the strength of the regression 
coefficient, b, of each independent variable X. Once the multiple regression analysis is completed, the 
regression coefficients can be ordered from smallest to largest to determine which independent variable 
contributes the most to changes in Y. Multiple linear regression is thus most appropriate for continuous 
variables where we wish to identify which variable or variables is most responsible for changes in the 
dependent variable. 
 
 A computerized multiple regression analysis results in the regression coefficients (or “regression 
weights”), the standard error of each regression coefficient, the intercept of the regression line, the variance 
of the residuals, and a statistic known as the coefficient of multiple determination or “multiple R” which is 
analogous to the Pearson product moment correlation coefficient “r”. It is utilized in the same manner as the 
coefficient of determination (r2) to measure the proportion of change in Y which can be attributed to changes 
in the dependent variables (X1...Xn). The statistical test of significance for R is the F distribution instead of the 
t distribution as in correlation. 
 
 Multiple regression analysis is readily performed by computer and can be performed in several ways. 
Forward selection begins with one independent (X) variable in the equation and sequentially adds additional 
variables one at a time until all statistically significant variables are included. Backward selection begins with 
all independent variables in the equation and sequentially removes variables until only the statistically 
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significant variables remain. Stepwise regression uses both forward and backward selection procedures 
together to determine the significant variables. Logistic regression is used when the independent variables 
include numerical and/or nominal values and the dependent or outcome variable is dichotomous, having only 
two values. An example of a logistic regression analysis would be assessing the effect of cardiac output, 
heart rate, and urinary output (all continuous variables) on patient survival (i.e., live versus die; a dichotomous 
variable). 
 
POTENTIAL ERRORS IN CORRELATION AND REGRESSION 
 

 Two special situations may result in erroneous correlation or regression results. First, multiple 
observations on the same patient should not be treated as independent observations. The sample size of the 
data set will appear to be increased when this is really not the case. Further, the multiple observations will 
already be correlated to some degree as they arise from the same patient. This results in an artificially 
increased correlation coefficient (Figure 8-4a). Ideally, a single observation should be obtained from each 
patient. In studies where repetitive measurements are essential to the study design, equal numbers of 
observations should be obtained from each patient to minimize this form of statistical error. 
 
 Second, the mixing of two different populations of patients should be avoided. Such grouped 
observations may appear to be significantly correlated when the separate groups by themselves are not 
(Figure 8-4b). This can also result in artificially increased correlation coefficients and erroneous conclusions. 
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Figure 8-4: Potential errors in the use of regression 
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