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CHAPTER SEVEN 
 

MULTIPLE COMPARISONS 
 
 As we saw in the last chapter, a common statistical method for comparing the means from two groups of 
patients is the t-test. Frequently, however, we wish to compare more than two groups of patients in order to 
determine whether a difference exists between any or all of the groups involved. There are several statistical 
methods for simultaneously comparing several groups of patients, all of which are examples of multiple 
comparison procedures. 
 
MULTIPLE T-TESTS 
 

 One option for comparing three or more groups of patients is to perform two-sample, unpaired t-tests on 
each of the possible pairwise combinations of the data, and compare the resulting p-values. As we will see, 
however, this method is not appropriate as the t-test is designed to evaluate differences between only two 
groups of patients. The use of multiple t-tests in this manner is one of the most commonly seen statistical 
errors in the medical literature. 
 
 For example, consider a study in which we randomly assign 100 patients to receive one of four different 
antibiotics (Drug A, B, C, and D) prior to operation, and we wish to assess the efficacy of each drug in 
preventing post-operative wound infections. In order to analyze the four groups of data using t-tests, we 
would need to perform two-sample, unpaired t-tests on each of the following 6 pairwise comparisons: 
 
 Drug A vs Drug B Drug A vs Drug C Drug A vs Drug D 
 Drug B vs Drug C Drug B vs Drug D Drug C vs Drug D 
 
 The problem with this approach is that with each comparison we make, there is always a chance, 
however small, that we will commit a Type I error; that is, we will erroneously reject the null hypothesis when, 
in reality, there is no difference between the groups. In a single two-sample t-test with a significance level of 
0.05, the likelihood of making such a Type I error is only 5%. This is known as the per-comparison error 
rate. However, if we use the same two-sample t-test to evaluate all four groups of data and perform all 6 
possible pairwise comparisons, the likelihood of making a Type I error in at least one of our 6 comparisons 
rises to 30% (0.05 x 6). This is known as the per-experiment error rate. Instead of having 95% confidence 
that our conclusions are correct, our confidence is now decreased to 70% and we are more likely to commit a 
Type I error. Thus, the two-sample t-test can lead to erroneous conclusions if we improperly use it to make 
multiple comparisons. 
 
 We could still use t-tests to perform multiple comparisons, acknowledging the increased per-experiment 
error rate, if it weren’t for another problem. The use of multiple t-tests results in the calculation of multiple p-
values (one for each comparison) which can only be used to compare the two groups within each 
comparison. There is not a separate p-value which we can use to compare all of the groups simultaneously 
and thereby document that one therapy or treatment is better than the rest. Thus, using t-tests we still cannot 
compare more than two groups of patients at a time. Multiple t-tests should therefore not be used in the 
statistical analysis of more than two groups of data. 
 
BONFERRONI ADJUSTMENT 
 

 As noted above, if we use two-sample statistical tests to perform multiple comparisons, the potential for 
error (the per-experiment error rate) is additive such that we are more likely to make erroneous conclusions. 
The Bonferroni adjustment takes this increase in the per-experiment error rate into account by adjusting the 
per-comparison error rate downward so that the likelihood of making a Type I error with each comparison is 
decreased. The Bonferroni adjustment allows us to ask the question “Are all of the groups different from each 
other?” 
 
 For example, in our study on antibiotic efficacy we were interested in comparing four groups of patients. If 
we wished to determine that all four groups were different from one another with 95% confidence, our overall 
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per-experiment error rate would need to be 0.05. To determine the per-comparison error rate for each test 
using the Bonferroni adjustment, we would divide our desired per-experiment error rate by the number of 
comparisons. For this example, the per-comparison error rate for each t-test would then be 0.05/6 or 0.0083. 
We would thus perform the six t-tests using a significance level of 0.0083. If all six t-tests resulted in a p-value 
of less than 0.0083, we could then state that all four groups were statistically different from one another with 
95% confidence (a significance level of 0.05). 
 
 One problem with the Bonferroni method is that it only estimates the true per-experiment error rate. The 
actual chance of making a Type I error may be much less. Consider the case where one of our four 
antibiotics (Drug B) is much more effective in preventing wound infections than are the other three (whose 
efficacies are all very similar). If we perform two-sample t-tests on each of the six possible combinations, we 
might obtain the following results (note that our analysis results in six different p-values which cannot be used 
to evaluate the study as a whole): 
 

Wound Infection Rates for Drugs A, B, C, and D 
 

 Comparison p-value  Comparison p-value 
 Drug A vs Drug B 0.01 Drug B vs Drug C 0.02 
 Drug A vs Drug C 0.20 Drug B vs Drug D 0.04 
 Drug A vs Drug D 0.50 Drug C vs Drug D 0.60 
 
Using the Bonferroni adjustment, in order to have 95% confidence in our results, our per-comparison 
significance level must be 0.0083 (0.05/6) and our hypotheses would be as follows: 
 

Null Hypothesis: none of the drugs  prevent wound infections 
Alternate Hypothesis: all four drugs prevent wound infections 

 

 Based on the Bonferroni adjustment, in order to reject our null hypothesis with 95% confidence, each of 
the six p-values must be less than 0.0083. Since this is not the case, we must accept our null hypothesis and 
conclude that none of the drugs are efficacious in preventing wound infections. This is clearly not the case, 
however, as the efficacy of Drug B is significantly greater than that of Drugs A, C, and D. In this situation, use 
of the Bonferroni adjustment results in our ignoring the significant differences present. The Bonferroni 
adjustment, by being a very conservative statistical test, loses statistical power and is more likely to result in a 
Type II error. By lowering the per-comparison error rate, it reduces the likelihood of erroneously concluding 
that a difference exists for the experiment as a whole (a Type I error), but at the same time makes it more 
likely that a significant difference among the groups will be missed (a Type II error). 
 
ANALYSIS OF VARIANCE (ANOVA)  
 

 A common solution to the issue of comparing three or more groups is a test known as analysis of 
variance or ANOVA. It addresses the question of whether there are differences between the means of the 
groups. It does not, however, identify which of the groups differ from one another. It is a method which 
expands on the traditional t-test allowing evaluation of multiple groups of observations without the increased 
risk of a Type I error.  
 
 Like the t-test, ANOVA makes three assumptions. First, the observations are assumed to be normally 
distributed. If this is not the case, the data must first be transformed to a normal distribution or a non-
parametric multiple comparisons method must be utilized. Second, the population variance is assumed to be 
the same in each group. The importance of this assumption is lessened if the sample sizes are equal. Third, 
the observations in each group must be independent and cannot affect the values of observations in another 
group. As with any statistical analysis, the raw data should be examined initially to determine whether these 
assumptions are met. ANOVA is a method that is complex, but is readily performed on a personal computer 
via a statistics package or spreadsheet. In order to understand the various types of ANOVA and the results 
they provide, we will briefly discuss the theory behind performing such an analysis. 
 
 ANOVA begins by calculating the mean of each group of data. It then combines the data from each group 
into a single group and calculates the grand mean of the grouped data. ANOVA uses these means to ask 
two questions: 
 

1) Is there a difference between the groups (the between-groups variance)?  
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• If the group means are similar to the grand mean of all of the data, the variance of the 
observations within the groups will be small and the groups will likely be very similar. 

 

2) How much variability exists between the observations and their respective group means (the 
within-groups variance)? 

 

• If the variability between the groups is similar to the variability within the groups, they are likely 
from the same population. 

 
 An F test is then performed, resulting in a critical value similar to that obtained for a t-test. The null 
hypothesis of the F test is that the group means are not different. If the ratio of the between-groups variance 
to within-groups variance is small, the group means will likely be very similar. The calculated F test statistic 
will then be small and will not reach significance. We would then accept the null hypothesis concluding that 
the groups are not different. If the ratio of the variances is large, the means of the groups are likely to be 
different. The calculated F statistic will be large and will likely exceed the critical value of F necessary to 
determine a significant difference. We would then accept the alternate hypothesis and state that a difference 
exists. 
 
 It is important to remember that a significant F test only indicates that some or all of the group means are 
different. As we do not know which of the means are different, further analyses known as post hoc 
comparisons must be performed to determine how the groups differ from one another. Examples of such 
methods include Tukey's HSD procedure, Scheffe's procedure, the Newman-Keuls procedure, and Dunnett's 
procedure, all of which are easily performed by a computer statistics package. 
 
 A computer generated ANOVA output usually includes the sum of squares, the mean square, the 
degrees of freedom (df) for the between-groups and within-groups variance calculations, the F test 
statistic, and the significance of the F test. The sum of squares refers to the sum of the squared 
differences between the group means. If the means are similar, the sum of squares will be small (and vice 
versa). The mean square for the between-groups variance is the sum of squares divided by the degrees of 
freedom, and is a measure of the variation of the between-groups means around the grand mean. The mean 
square for the within-groups variance (also known as the error mean square) is a pooled estimate of the 
variation of the within-groups observations around their respective group means. The F statistic is calculated 
by dividing the mean square of the between-groups variance by the mean square of the within-groups 
variance. Critical values of the F statistic can be obtained from an F distribution table based on the number of 
groups being compared (k) and the number of observations present in each group (n). The degrees of 
freedom for the denominator (the between-groups variance) is given by k - 1. The degrees of freedom for the 
numerator (the within-groups variance) is given by k(n - 1). 
 
 ANOVA exists in two forms. One-way or single-factor ANOVA compares two or more independent 
variables with a single dependent or outcome variable. An example would be our study comparing the 
efficacy of four antibiotics (the independent variables) on the incidence of wound infection (the dependent 
variable). Two-way or two-factor ANOVA allows for evaluation of the effect of two or more independent 
variables on two different dependent variables. We would use two-factor ANOVA if we wished to determine 
not only the efficacy of the four antibiotics on the incidence of wound infections (the first dependent variable), 
but also their impact on hospital length of stay as a result of wound infections (the second dependent 
variable). 
  
NON-PARAMETRIC ANOVA 
 

 One of the primary assumptions in the use of ANOVA is that the data are normally distributed. If this is 
not the case, the use of ANOVA may result in erroneous conclusions. When data are not normally distributed, 
there are two options. The first option is to transform the data to a normal distribution using a logarithmic or 
square root transformation. One problem with this method is that the resulting ANOVA will refer to the 
transformed observations and not the original data. Further, the units of transformed data may be difficult to 
interpret due to the logarithmic manipulation of the data. The second option for dealing with non-normally 
distributed data is to perform a non-parametric ANOVA. Like the non-parametric versions of the t-test (the 
Wilcoxon signed-ranks test and Wilcoxon rank-sum test), non-parametric ANOVA is based on analysis of the 
ranks of the data. The non-parametric equivalent of one-way ANOVA is the Kruskal-Wallis test while the 
equivalent of two-way ANOVA is the Friedman two-way ANOVA by ranks. These tests can be found in  
most computer statistics packages. 
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META-ANALYSIS 
 

 A special case of multiple comparisons is meta-analysis. Meta-analysis is a statistical process for 
systematically reviewing and combining the results of multiple studies in order to draw conclusions about a 
treatment or outcome based on the combined data and increased sample size. It is helpful when 1) the 
existing studies are in disagreement as to a conclusion, 2) the existing studies have small sample sizes and 
therefore lack statistical power, 3) the effect size of interest is small and requires a larger number of 
observations to reach statistical significance, or 4) a large scale trial would prove too costly to perform. The 
conclusions of meta-analyses are frequently helpful in planning future large scale clinical trials. 
 
 Meta-analyses are being seen more and more commonly in the medical literature. They must be carefully 
designed and the outcome of interest clearly formulated before the study is begun in order to ensure accurate 
conclusions. Meta-analysis begins by identifying all relevant clinical trials and studies pertaining to the subject 
of interest not only through computerized literature searches (which may contain only 60% of relevant 
studies), but also through review of textbooks, referenced articles, published abstracts, and unpublished 
research. A major concern in meta-analysis is publication bias. “Negative studies” (i.e., those that do not 
have a positive finding) are less likely to be published than “positive studies”. These unpublished results, had 
they been published, could potentially alter the results of a meta-analysis thereby ntroducing bias. Statistical 
methods exist to take into account the potential effect of unpublished negative studies on meta-analysis 
results. 
 
 Clinical trials and studies which are identified from the medical literature are then carefully assessed to 
determine their “combinability” (i.e., are the trials sufficiently similar that they can be compared?) and 
“homogeneity” (i.e., are the patients evaluated in each study similar). Careful definition of inclusion and 
exclusion criteria is essential in identifying those studies which will be analyzed. The data quality and design 
of each study is also assessed. Missing or insufficient data may require that the original authors be contacted 
to obtain the necessary information to ensure accurate statistical analysis and clinically useful conclusions. 
 
 The data are subsequently blinded and reviewed critically by at least two investigators to confirm that the 
data are being interpreted accurately. Special statistical methods are utilized to “pool” the data from each trial 
and determine whether the proposed study hypotheses can be either accepted or rejected with significance. 
Sensitivity analysis is then performed to ascertain whether inclusion (or exclusion) of various types of 
studies (randomized versus non-randomized, controlled versus uncontrolled) makes a difference in the meta-
analysis conclusions. Meta-analysis, although methodologically complex and time consuming, is a useful 
statistical method for reaching conclusions that would otherwise not be possible in a single clinical trial. It will 
likely be seen more and more frequently in the medical literature as an economic alternative to performing 
expensive, multi-institutional studies. In order for such meta-analyses to be valid, however, strict, rigorous 
guidelines must be followed to ensure that the meta-analysis is performed correctly. The reader is referred to 
the references at the end of this chapter for further details on the methodology and interpretation of meta-
analyses. 
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