OXYGEN TRANSPORT CALCULATIONS

Michael L. Cheatham, MD, FACS, FCCM
Director, Surgical Intensive Care Units
Orlando Regional Medical Center
Orlando, Florida

IN REVIEW...

• There are four primary monitoring questions
 – Is intravascular volume or “preload” adequate?
 – Is blood flow adequate?
 – Is vascular resistance appropriate?
 – Is oxygen transport balance appropriate?

• Volumetric assessment of preload status is superior to pressure-based measurements

• Continuous hemodynamic monitoring provides an improved understanding of patient illness and response to therapy

OXYGEN TRANSPORT BALANCE

• The foremost question in critical care is not:
 a) What is the perfect PAOP or EDVI?
 b) What cardiac output ensures patient survival?
 c) What systemic vascular resistance is optimal?

• The ultimate question is:
 d) Is tissue oxygen delivery sufficient to meet cellular oxygen demand?

OXYGEN TRANSPORT BALANCE

• Failure to provide sufficient oxygen to meet cellular demands leads to
 – Cellular ischemia
 – Bacterial translocation
 – Sepsis
 – Worsening shock
 – Organ dysfunction
 – Multiple system organ failure
 – Death

DEFINITIONS

• Oxygen delivery (DO₂)
 – The amount of oxygen pumped to the tissues by the heart

• Oxygen consumption (VO₂)
 – The amount of oxygen consumed by the tissues

• Oxygen demand
 – The amount of oxygen required by the tissues to function aerobically
 – May exceed both oxygen delivery and consumption during critical illness

ASSESSING OXYGEN TRANSPORT

• To assess the adequacy of a patient’s oxygen transport balance, four more questions must be considered
 – Does oxygen delivery meet the patient’s needs?
 – Is cardiac output adequate for consumption?
 – Is oxygen consumption adequate for demand?
 – Is the patient’s hypoxemia due to a pulmonary problem or to a low flow state?
OXYGEN TRANSPORT BALANCE

• If oxygen delivery and oxygen consumption are balanced
 – “Supply” equals “demand”
 – The cellular requirements of the body are met
 – Normal metabolic processes proceed uninhibited
 – Anaerobic metabolism is minimized

“A Happy Pea Monster”
The well-known fable of the “Pea Monster” will be used to illustrate the key concepts of oxygen transport balance

“A Sick Pea Monster”

OXYGEN TRANSPORT BALANCE

• If oxygen demand exceeds delivery, shock is present
 – Cellular oxygen is deficient
 – Energy is produced via anaerobic metabolism with lactic acid (lactate) as a byproduct
 ➢ Lactate cannot be reutilized and accumulates leading to:
 – Metabolic acidosis
 – Cellular injury
 – Cellular death

OXYGEN TRANSPORT BALANCE

• Oxygen consumption may just meet oxygen demand
 – Requires a high extraction of oxygen from blood
 – Places patient at risk for rapid decompensation
 ➢ Little physiologic reserve is present
 ➢ Organs with high baseline oxygen extraction, such as the heart, are at high risk for ischemia

“An Unhappy Pea Monster”

OXYGEN TRANSPORT BALANCE

• Patient survival is improved by optimizing oxygen delivery to ensure that...
 1) Oxygen demand is met at baseline
 AND
 2) There is an adequate physiologic oxygen reserve to cope with acute increases in oxygen demand

OXYGEN TRANSPORT BALANCE

• Knowledge of the oxygen transport equations is essential to understanding the pathophysiology and appropriate treatment for the various shock states
• Pulmonary artery and central venous oximetry catheters provide the ability to monitor oxygen transport balance at the bedside
 ➢ Continuous mixed venous oximetry (SvO₂)
 ➢ Continuous central venous oximetry (ScvO₂)
 ➢ Intermittent calculation of oxygen delivery (DO₂) and oxygen consumption (VO₂)

MEASURED PARAMETERS

• Arterial oxygen tension (PaO₂)
• Arterial carbon dioxide tension (PaCO₂)
• Arterial oxygen saturation (SaO₂ or SpO₂)
• Mixed venous oxygen saturation (SvO₂)
• Central venous oxygen saturation (ScvO₂)
• Venous oxygen tension (PvO₂)
• Hemoglobin (Hgb)
• Cardiac output (CO)
CALCULATED PARAMETERS

- Cardiac index (CI)
- Pulmonary capillary oxygen content (CcO₂)
- Arterial oxygen content (CaO₂)
- Venous oxygen content (CvO₂)
- Arterial-venous oxygen content difference (Ca-vO₂)
- Oxygen utilization coefficient (OUC)
- Oxygen delivery index (DO₂I)
- Oxygen consumption index (VO₂I)
- Intrapulmonary shunt (Qsp/Qt)

VASCULAR CIRCUIT

- Central to any assessment of oxygen transport is the ability to calculate the amount of oxygen in the blood at any point in the body.
- Such calculations are dependent upon both the measured oxygen tension and oxygen saturation at each point.

CALCULATING OXYGEN CONTENT

- To calculate the oxygen content of blood, one must recognize:
 1. Oxygen can be either “bound” or “unbound”
 2. Each gram of Hgb can carry up to 1.34 mL of oxygen
 > This number varies from species to species
 3. The solubility of oxygen in blood is 0.0031 mL/dL
 4. The amount of oxygen carried by Hgb depends upon its saturation
 > This varies depending upon the patient’s inspired oxygen fraction (FiO₂) and the presence of any mixed, unoxygenated blood
 - Also known as “intrapulmonary shunt”

OXYGEN CONTENT

- Oxygen content = oxygen bound to Hgb + oxygen dissolved in plasma
- Oxygen bound = Hgb conc x oxygen Hgb can carry x Hgb saturation
- Oxygen dissolved = oxygen tension x solubility coefficient of oxygen

\[C \cdot O_2 = (1.34 \times Hgb \times S \cdot O_2) + (P \cdot O_2 \times 0.0031) \]

where “C” signifies the location of the blood
("c" for end-capillary, "a" for arterial, or "v" for venous)

ALVEOLAR OXYGEN TENSION (P_{A\text{O}_2})

- Assuming an F_{O_2} of > 0.30 (i.e., S_{A\text{O}_2}=1.0)
 \[P_{A\text{O}_2} = F_{O_2} \times [(P_B-P_{H2O})-(P\cdotCO_2/RQ)] \]
 where \(P_B \) = barometric pressure, \(P_{H2O} \) = water vapor pressure, \(RQ \) = respiratory quotient

\[P_{A\text{O}_2} = 0.30 \times [(760 \text{ torr} - 47 \text{ torr}) - (40 \text{ torr} / 0.8)] \]

(assuming normal values)

\[P_{A\text{O}_2} = 0.30 \times 663 \text{ torr} = 199 \text{ torr} \]

\(P_{A\text{O}_2} \) can also be approximated rapidly at the bedside as 700 torr x FiO₂ - 50 torr
PULMONARY END-CAPILLARY OXYGEN CONTENT (CcO₂)

- The oxygen content of pulmonary end-capillary blood as it leaves the alveolus

 \[
 C_{cO_2} = (1.34 \times Hgb \times 1.0) + (P_{A\text{O}_2} \times 0.0031)
 \]

 (oxygen bound) (oxygen dissolved)

 \[
 = (1.34 \times 15 \text{ gm} \times 1.0) + (199 \text{ torr} \times 0.0031)
 \]

 = 20.1 ml O₂/dl blood + 0.6 ml O₂/dl blood

 = 20.7 ml O₂/dl blood

- Note again that alveolar (PₐAOO₂) and not arterial (PₐaOO₂) oxygen tension is used in this equation

VENOUS OXYGEN CONTENT (CvO₂)

- Oxygen content of blood returning to the heart
 - >90% of arterial oxygen is bound to Hgb
 - <1% of venous oxygen is dissolved in plasma

 \[
 C_{vO_2} = (1.34 \times Hgb \times S_vO_2) + (P_{vO_2} \times 0.0031)
 \]

 \[
 = (1.34 \times 15 \text{ gm} \times 0.75) + (35 \text{ torr} \times 0.0031)
 \]

 = 15.1 ml O₂/dl blood + 0.11 ml O₂/dl blood

 = 15.2 ml O₂/dl blood

ARTERIAL OXYGEN CONTENT (CaO₂)

- Oxygen content of blood leaving the heart
 - 98% of arterial oxygen is bound to Hgb
 - 2% of arterial oxygen is dissolved in plasma

 \[
 C_{aO_2} = (1.34 \times Hgb \times S_aO_2) + (P_{aO_2} \times 0.0031)
 \]

 \[
 = (1.34 \times 15 \text{ gm} \times 1.0) + (100 \text{ torr} \times 0.0031)
 \]

 = 20.1 ml O₂/dl blood + 0.31 ml O₂/dl blood

 = 20.4 ml O₂/dl blood

CcO₂ vs. CaO₂

- Question:
 - So if the CcO₂ was 20.7 ml, in this example, and the CaO₂ is now 20.4 ml, where did the other 0.3 ml of oxygen go???

- Answer:
 - A small amount of oxygen is used by the lung and heart before being pumped to the body
 - This deoxygenated blood is returned to the left heart and contributes to intra-pulmonary shunt (stay tuned!)
VENOUS OXYGEN CONTENT (CvO₂)

\[[15.2 \text{ mL/dL}] \]

\[[35 \text{ torr}] \]

\[[0.75] \]

ARTERIAL-VENOUS OXYGEN CONTENT DIFFERENCE (Ca-vO₂)

- The difference in oxygen content between arterial and venous blood
- Represents the amount of oxygen used during one pass of blood through the body
- Can be used as an estimate of the patient’s physiologic oxygen reserve

\[\text{Ca}_vO₂ = \text{C}_aO₂ - \text{C}_vO₂ \]

\[= 20.4 \text{ ml O}_2/\text{dl blood} - 15.2 \text{ ml O}_2/\text{dl blood} \]

\[= 5.2 \text{ ml O}_2/\text{dl blood} \]

ARTERIAL-VENOUS OXYGEN CONTENT DIFFERENCE (Ca-vO₂)

\[[20.4 \text{ mL/dL}] \]

\[[100 \text{ torr}] \]

\[[1.0] \]

OXYGEN DELIVERY INDEX (DO₂I)

- Volume of gaseous oxygen pumped from the left ventricle per minute per meter squared BSA

\[\text{DO}_2I = \text{CI x C}_aO₂ x 10 \text{ dL/L} \]

The 10 dL/L corrects for the fact that CI is measured in L/min/m² and oxygen content is measured in mL/dL

\[= 4.0 \text{ L/min-m²} x 20.4 \text{ ml O}_2/\text{dl blood} x 10 \text{ dL/L} \]

\[= 800 \text{ ml O}_2/\text{min-m²} \]

- This is a very important resuscitation endpoint for ensuring adequate oxygen delivery to the tissues

OXYGEN CONSUMPTION INDEX (VO₂I)

- Volume of gaseous O₂ returned to the right atrium per minute per meter squared BSA

\[\text{VO}_2I = \text{CI x C}_vO₂ x 10 \text{ dL/L} \]

The 10 dL/L corrects for the fact that CI is measured in L/min/m² and oxygen content is measured in mL/dL

\[= 4.0 \text{ L/min-m²} x 5.2 \text{ ml O}_2/\text{dl blood} x 10 \text{ dL/L} \]

\[= 200 \text{ ml O}_2/\text{min-m²} \]

OXYGEN UTILIZATION COEFFICIENT (OUC)

- Percentage of delivered oxygen which is consumed by the body
- Also known as the oxygen extraction ratio (O₂ER)

\[\text{OUC} = \frac{\text{VO}_2I}{\text{DO}_2I} \]

\[= \frac{200 \text{ ml O}_2/\text{min-m²}}{800 \text{ ml O}_2/\text{min-m²}} \]

\[= 0.25 \]

- If SaO₂ is maintained at > 0.92, OUC can be approximated as 1- SvO₂

So you now have the ability to measure or calculate the oxygen content and tension at any point in the body!
Oxygen Transport Calculations – M. L. Cheatham, MD, FACS, FCCM

OXYGEN UTILIZATION COEFFICIENT (OUC)

- **PULMONARY**
 - \(15.2 \text{ mL/dL} \)
 - \(35 \text{ torr} \)
 - \(0.75 \)
- **SYSTEMIC**
 - \(5.2 \text{ mL/dL} \)
 - \(0.25 \)
- \(20.7 \text{ mL/dL} \)
- \(199 \text{ torr} \)
- \(1.0 \)
- \(20.4 \text{ mL/dL} \)
- \(100 \text{ torr} \)
- \(1.0 \)

MIXED VENOUS OXYGEN SATURATION (SvO₂)

- Provides a continuous “online” indication of the relative balance between \(\text{VO}_2 \) and \(\text{DO}_2 \)
- It is the “flow-weighted average” of the venous saturations from all perfused vascular beds
 - Does not reflect oxygen transport adequacy of non-perfused vascular beds
 - A “normal” \(\text{SvO}_2 \) therefore does not mean that all tissues are adequately oxygenated
 - Does not yield information about the adequacy of perfusion of any individual vascular bed

MIXED VENOUS OXYGEN SATURATION (SvO₂)

- Can be used...
 - As an “early warning signal” to detect the onset of oxygen transport imbalance before clinical deterioration occurs
 - To evaluate the efficacy of therapeutic interventions such that physiologic end-points are reached more quickly
 - To identify potentially detrimental consequences of “patient care” (suctioning, positioning, etc.) that might otherwise go unnoticed

MIXED VENOUS OXYGEN SATURATION (SvO₂)

- If \(\text{SvO}_2 \) decreases...
 - Consumption (\(\text{VO}_2 \)) is increasing OR
 - Delivery (\(\text{DO}_2 \)) is decreasing
- If \(\text{SvO}_2 \) increases...
 - Consumption (\(\text{VO}_2 \)) is decreasing OR
 - Delivery (\(\text{DO}_2 \)) is increasing OR
 - Blood is being shunted without releasing its oxygen OR
 - Oxygen uptake by the tissues is decreasing

MIXED VENOUS OXYGEN SATURATION (SvO₂)

- As a general rule...
 - A “low” \(\text{S}_v\text{O}_2 \) is always bad
 - A “normal” \(\text{S}_v\text{O}_2 \) is not necessarily good
 - A “high” \(\text{S}_v\text{O}_2 \) is usually bad

MIXED VENOUS OXYGEN SATURATION (SvO₂)

- The four determinants of \(\text{SvO}_2 \)
 - Hemoglobin (Hgb)
 - Cardiac output / index (CO / CI)
 - Arterial oxygen saturation (\(\text{SaO}_2 \))
 - Oxygen consumption index (\(\text{VO}_2 \))
- The four main causes of low \(\text{SvO}_2 \)
 - Anemia
 - Low cardiac output
 - Arterial desaturation
 - Increased \(\text{VO}_2 \)
OXYGEN SUPPLY DEPENDENCY

- When \(\text{DO}_{2I} \) exceeds oxygen demand, \(\text{VO}_{2I} \) will "plateau" and no longer rise in response to \(\text{DO}_{2I} \)
 - The goal in oxygen transport resuscitation
- When \(\text{DO}_{2I} \) no longer meets oxygen demand, \(\text{VO}_{2I} \) becomes "supply dependent"
 - So called "critical \(\text{DO}_{2I} \)"
 - Patients should be maintained to the right of "critical \(\text{DO}_{2I} \)"

OXYGEN UNLOADING

- The optimal \(\text{Hgb} \) concentration is unknown
- Judicious amounts of acidemia, hypercarbia, and fever all produce a right shift in the oxyhemoglobin association curve and may improve tissue unloading of oxygen
- These factors should be kept in mind when attempting to improve oxygen delivery to the tissues

MIXED VENOUS OXYGEN SATURATION (SvO₂)

- Two common sources of error in SvO₂
 - Inadequate calibration
 - Perform in-vitro calibration prior to catheter insertion
 - Perform in-vivo calibration via mixed venous blood gas
 - Catheter malposition
 - If the catheter tip is against the wall of the pulmonary artery, the light reflected back to the catheter will be amplified artificially increasing the SvO₂ measurement

FUNDAMENTAL QUESTIONS

- Question #1
 - Is \(\text{DO}_{2I} \) adequate to meet the patient’s needs?
 - Is \(\text{Cl} \) adequate to support \(\text{VO}_{2I} \)?
 - Is \(\text{VO}_{2I} \) appropriate for oxygen demand?
 - Is the patient’s hypoxemia due to a pulmonary problem or a low flow state?
 - Is \(\text{DO}_{2I} \) adequate to meet the patient’s needs?
 - \(\text{DO}_{2I} \) should be at least 500 ml O₂/min-m²
 - Higher levels do not change outcome
 - If lower, check the SvO₂
 - < 0.65 suggests that oxygen supply is barely meeting oxygen demand
 - Ensure that the patient’s \(\text{Hgb} \) is appropriate
 - Consider transfusion of packed red blood cells if \(\text{DO}_{2I} \) is inadequate
 - \(\text{Hgb} \) level has the greatest impact on \(\text{DO}_{2I} \)

FOUR PRIMARY QUESTIONS

- Is \(\text{DO}_{2I} \) adequate to meet the patient’s needs?
- Is \(\text{Cl} \) adequate to support \(\text{VO}_{2I} \)?
- Is \(\text{VO}_{2I} \) appropriate for oxygen demand?
- Is the patient’s hypoxemia due to a pulmonary problem or a low flow state?

A sensitive “online” monitor of the adequacy of balance between oxygen delivery and oxygen consumption
- Not a specific indicator of the cause for oxygen transport compromise
- Accurately predicts potentially detrimental changes in patient status before they become clinically apparent
 - Allows appropriate therapeutic interventions to be initiated prior to development of severe changes in cardiorespiratory status

OXYGEN UNLOADING

- The optimal \(\text{Hgb} \) concentration is unknown
- Judicious amounts of acidemia, hypercarbia, and fever all produce a right shift in the oxyhemoglobin association curve and may improve tissue unloading of oxygen
- These factors should be kept in mind when attempting to improve oxygen delivery to the tissues

Revised 01/14/2009
FUNDAMENTAL QUESTIONS

- Question #2
 - Is CI adequate to support VO₂?
 - Check the Ca-vO₂
 - Check the heart rate and stroke volume

FUNDAMENTAL QUESTIONS

- Question #2
 - Is CI adequate to support VO₂?
 - Check the Ca-vO₂
 - If < 5 ml O₂/dl blood, CI is sufficient to meet the body’s demands for oxygen
 » A large percentage of blood returned to the heart is still oxygenated
 - If > 5 ml O₂/dl blood, an abnormally high percentage of oxygen is being extracted from the blood
 » Attempts to increase CI and DO₂ should be undertaken

FUNDAMENTAL QUESTIONS

- Question #2
 - Is CI adequate to support VO₂?
 - Check the heart rate and stroke volume
 - CI = SVI x HR
 - High heart rates may reduce diastolic filling time impairing stroke volume
 - Patients with tachycardia may benefit from
 » Fluid resuscitation
 » Judicious beta-blockade
 » Correction of abnormal rhythms

FUNDAMENTAL QUESTIONS

- Question #3
 - Is consumption appropriate for demand?
 - Check a lactic acid level
 - If > 2.0 mmol/L, anaerobic metabolism is present
 » CI and DO₂ should be optimized
 - If SvO₂ is normal, lactic acid is probably due to prior anaerobic metabolism
 - If SvO₂ is low, anaerobic metabolism is likely still occurring

FUNDAMENTAL QUESTIONS

- Question #4
 - Is the patient’s hypoxemia due to a pulmonary problem (i.e., increased intrapulmonary shunt) OR to a low flow state (i.e., low Ca-vO₂)?
 - Calculate the patient’s intrapulmonary shunt (Qsp/Qt)

INTRAPULMONARY SHUNT (Qsp/Qt)

- Also known as "venous admixture"
- Blood which does not pass through ventilated portions of the lung and leaves the lung desaturated
- Normal intrapulmonary shunt is 2-5%
- May exceed 50% in patients with severe acute respiratory distress syndrome (ARDS)
- Commonly estimated using PAO₂-PaO₂
 - The “alveolar-arterial” or “A-a gradient”
NORMAL INTRAPULMONARY SHUNT

- There are three primary sources of normal Qsp/Qt (i.e., deoxygenated blood leaving the left heart)
 - Bronchial artery blood which enters the pulmonary veins after giving up some of its oxygen to the bronchi
 - Desaturated blood which enters the left ventricle via the Thebesian veins after perfusing the myocardium
 - Normal alveolar collapse in the apices of the lungs (West’s Zone I lung)

INTRAPULMONARY SHUNT

- Represents an "oxygen refractory" hypoxemia
 - Shunted blood is not exposed to ventilated alveoli
 - Cannot be improved with supplemental oxygen regardless of the oxygen fraction administered

ABNORMAL INTRAPULMONARY SHUNT

- There are a number of sources of Qsp/Qt in the critically ill
 - Atelectasis
 - Lobar pneumonia
 - Inhalation injury
 - Drowning
 - Acute Respiratory Distress Syndrome (ARDS)
 - Abdominal Compartment Syndrome (ACS)

INTRAPULMONARY SHUNT EQUATION

- Knowing how Qsp/Qt is calculated is important
- Definitions
 - $Q_t = \text{total cardiac output}$
 - $Q_s = \text{shunted portion of cardiac output}$
 - $Q_{ns} = \text{normal pulmonary end-capillary blood flow that is not shunted past abnormal alveoli}$
- Therefore,

$$Qt = Q_s + Q_{ns}$$

Total blood flow = shunted + non-shunted blood

FURTHER DEFINITIONS

- $Q_t \cdot CaO_2 = \text{total oxygen delivered to the body}$
 - *The equation for oxygen delivery (DO₂)*
- $Q_s \cdot CvO_2 = \text{total oxygen within shunted blood}$
 - *No oxygen is added; content remains CvO₂*
- $Q_{ns} \cdot CcO_2 = \text{total oxygen within end-capillary blood}$
- Therefore,

$$Qt \cdot CaO_2 = Q_s \cdot CvO_2 + Q_{ns} \cdot CcO_2$$

Total oxygen delivered = sum of the oxygen within shunted and non-shunted blood

Further definitions

- $Q_t (CaO_2) = Q_s (CvO_2) + (Qt - Q_s)(CcO_2)$
- Substituting $(Qt - Q_s)$ for Q_{ns}...

$$Q_t (CaO_2) = Q_s (CvO_2) + Qt (CcO_2) - Q_s (CcO_2)$$

Rearranging...

$$Q_s (CcO_2 - CvO_2) = Qt (CoO_2 - CaO_2)$$

Further rearranging...

$$Q_s \frac{Qt}{Q_t} = \frac{(CoO_2 - CaO_2)}{(CcO_2 - CvO_2)}$$

The "Shunt Equation"
OXYGEN TRANSPORT BALANCE

• For those of you who are still awake, you will no doubt remember the following fable from your preschool days...

Once upon a time, there was a pea eating monster who lived near a pea factory. A train delivered the peas to the monster day and night. As long as the villagers delivered enough peas to the monster, he remained happy and didn’t terrorize the countryside.

NORMAL PEA DELIVERY

• The train made 5 trips between the pea factory and the monster every minute. Each train consisted of 5 cars with each car holding 40 peas.
• Therefore…
 – 5 trips per minute
 – 5 cars per train
 – 40 peas per car
 – 200 peas per train
 – 1000 peas per minute

NORMAL PEA CONSUMPTION

• The pea monster ate 10 peas from each car as it passed
• Therefore, he consumed…
 – 10 peas per car
 – 50 peas per train
 – 5 trains per minute
 – 250 peas per minute

NORMAL PEA UTILIZATION

• The villagers created the “pea utilization ratio” and the “train car pea saturation” to monitor the monster

Pea Utilization Ratio = \(\frac{\text{Pea Consumption}}{\text{Pea Delivery}} \)

= \(\frac{1000 \text{ peas per min}}{250 \text{ peas per min}} \)

= 0.25

Train car pea saturation = \(\frac{\text{Delivery} - \text{Consumption}}{\text{Delivery}} \)

= \(\frac{(1000-750) \text{ peas per min}}{1000 \text{ peas per min}} \)

= 0.25
NORMAL PEA RETURN

- Peas delivered = 200 peas per train
- Peas returned = 150 peas per train
- Peas consumed = 50 peas per train

POTENTIAL PROBLEMS

- If the Pea Monster gets hungry and eats more peas, fewer peas are returned and the factory may not be able to fully load the train cars before the train leaves the factory again.
- As a result, there will be fewer peas to deliver to the monster during the next trip.

POTENTIAL PROBLEMS

- The monster has short arms that limit how many peas he can reach. The first 10 peas (25%) are scooped off easily.

POTENTIAL PROBLEMS

- The second 10 peas (50%) can be plucked out, but with some difficulty.

POTENTIAL PROBLEMS

- The monster’s arms are too short to reach the bottom of the car and he cannot remove the bottom 20 peas!

PEA DELIVERY

- May be augmented by:
 - Increasing the number of
 - Peas per car
 - Up to a point that the cars are full
 - Cars per train
 - More cars can be added to the train
 - Trains per minute
 - The train can travel faster
 - Improving the ease of pea removal
 - Increasing the rapidity of pea loading
WHEN THE MONSTER’S NEEDS ARE MET...

WHEN THE MONSTER’S NEEDS ARE NOT MET...

Ever heard of my cousin “Godzilla”??

CAUSES OF AN UNHAPPY MONSTER

- Hungry monster
- Too few cars
- Train too slow
- Cars not full of peas
- Too few peas
- Wrong peas
- Peas missing cars
- Train missing loader

HUNGRY MONSTER

- 5 cars per train
- 5 trains per minute
 - 20 peas eaten per car
 - 100 peas eaten per train
 - 500 peas eaten per minute
 - 1000 peas delivered per minute

Pea utilization = \frac{500 \text{ peas}}{1000 \text{ peas}} = 0.50

TOO FEW CARS

- 5 trips per minute
- 5 cars per train
 - 12.5 peas eaten per car
 - 50 peas eaten per train
 - 250 160 peas delivered per train
 - 160 800 peas delivered per minute

Pea utilization = \frac{250 \text{ peas}}{800 \text{ peas}} = 0.31

TRAIN TOO SLOW

- 4 trips per minute
- 5 cars per train
 - 12.5 peas eaten per car
 - 62.5 peas eaten per train
 - 250 peas eaten per minute
 - 160 800 peas delivered per minute

Pea utilization = \frac{250 \text{ peas}}{800 \text{ peas}} = 0.31
HUNGRY MONSTER & SLOW TRAIN

- 54 trips per minute
- 5 cars per train
- 102 peas eaten per car
- 53100 peas eaten per train
- 250400 peas eaten per minute
- 1600800 peas delivered per minute

Pea utilization = \frac{400 \text{ peas}}{800 \text{ peas}} = 0.50

HUNGRY MONSTER, SLOW TRAIN, TOO FEW CARS, CARS NOT FULL

- 54 trips per minute
- 54 cars per train
- 4030 peas per car
- 1315 peas eaten per car
- 250320 peas eaten per minute
- 1600480 peas delivered per minute

Pea utilization = \frac{320 \text{ peas}}{480 \text{ peas}} = 0.66

THE MORAL OF THE FABLE...

- Never heard of the "Fable of the Pea Monster"???
 - Your preschool education was obviously deficient

- So what is the moral of the fable?

THE MORAL OF THE FABLE...

- Hungry monster
- Too few cars
- Train too slow
- Cars not full of peas
- Too few peas
- Wrong peas
- Peas missing cars
- Train missing loader

Increased consumption
Low hemoglobin
Low cardiac output
Low oxygen saturation
Low \(\text{FiO}_2 \)
Carboxyhemoglobin
Vein-Q mismatch
Intrapulmonary shunt

If only it were that simple...
CONCLUSIONS

- Assessment of oxygen transport balance through calculation of oxygen delivery, consumption, and utilization is an essential part of patient resuscitation.
- The oxygen transport parameters are useful resuscitation endpoints in titrating therapy to ensure adequate tissue perfusion and oxygenation.