Practical Antimicrobial Therapy

Kara L. Birrer, PharmD
Clinical Pharmacist
Trauma/General Surgery

Objectives

- Introduction to basic antimicrobial principles
- Pharmacokinetics
- Pharmacodynamics
- Provide an overview of some of the most common antimicrobial drug classes
 - β-lactam antibiotics
 - Aminoglycosides
 - Fluoroquinolones
 - A few others...

Background

- Basic mechanism of action:
 - Time-dependent killing
 - Concentration-dependent killing
- Pharmacokinetics (PK)
 - Peak & Trough serum concentrations
 - Half-life ($T_{1/2}$)
 - Source of metabolism
 - Source of excretion (kidney, GI, etc)
- Pharmacodynamics (PD) – relationship between PK & minimum inhibitory concentration (MIC)

PD Principals

- Area Under the Curve (AUC) : MIC ratio
 - $\geq 30-60:1$
 - $\geq 125:1$
- Time above MIC ratio
 - $\geq 50-60\%$ of the dosing interval
- Peak Concentration : MIC ratio
 - $\geq 10:1$
- Aminoglycosides vs. Gram(-) organisms
- Fluoroquinolones vs. Gram(-) organs

PD Goals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Goal</th>
<th>Antimicrobial Drug Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time above MIC</td>
<td>$>50-60%$ of the dosing interval</td>
<td>All β-lactams, Macrolides, Linezolid</td>
</tr>
<tr>
<td>Peak Conc : MIC ratio</td>
<td>$\geq 10:1$</td>
<td>Aminoglycosides vs. Gram(-) organisms</td>
</tr>
<tr>
<td>Area under the Curve (AUC) : MIC</td>
<td>$\geq 30-60:1$ $\geq 125:1$</td>
<td>Fluoroquinolones vs. Gram(-) vs. Gram(+) organs</td>
</tr>
</tbody>
</table>

Patient Case: JR

- 73yom s/p AAA repair & then L-carotid endarterectomy
- *Pseudomonas* pneumonia:
 - S: Zosyn (MIC=64), Tobramycin (MIC≤1)
 - L: Cefepime (MIC=16)
- Current Antibiotics:
 - Cefepime 1g IV q6h
 - Tobramycin 540mg IV q48 (7mg/kg)

Is this adequate therapy?
Antibiotic Therapy – Kara Birrer, PharmD

Mechanisms of Action

<table>
<thead>
<tr>
<th>Mechanism of Action</th>
<th>Antibacterial Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibition of Cell Wall</td>
<td>• β-lactams</td>
</tr>
<tr>
<td>Synthesis</td>
<td>• Vancomycin</td>
</tr>
<tr>
<td>Inhibition of protein</td>
<td>• Aminoglycosides</td>
</tr>
<tr>
<td>synthesis</td>
<td>• Linezolid</td>
</tr>
<tr>
<td>Inhibition of DNA</td>
<td>• Fluoroquinolones</td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>Inhibition of folic acid</td>
<td>• Trimethoprim</td>
</tr>
<tr>
<td>synthesis</td>
<td>• Tetracyclines</td>
</tr>
<tr>
<td>Inhibition of RNA</td>
<td>• Rifampin</td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
</tr>
<tr>
<td>Disruption of cell</td>
<td>• Daptomycin</td>
</tr>
<tr>
<td>membrane integrity</td>
<td>• Polymyxin B, E (Colistin)</td>
</tr>
<tr>
<td>Other</td>
<td>• Metronidazole</td>
</tr>
<tr>
<td></td>
<td>• Nitrofuransulfonamide</td>
</tr>
</tbody>
</table>

Penicillins

- Bactericidal cell-wall synthesis inhibitors
- Gram(+) activity maintained across spectrum
- Gram(-) activity dependent on ability to cross porin channels
- β-lactamase inhibitor combinations:
 - Methicillin-Resistant S. aureus (MRSA) coverage
 - Enhanced anaerobic activity

PCN Gram(-) Spectrum of Activity
Penicillins

- Major Adverse Events:
 - Anaphylaxis
 - Rash and/or hives
 - Seizures
- Anti-
 - Staphylococcus aureus Penicillins
 - Resistant to β-lactamase
 - NO Gram(-) activity
- ORMC Formulary: Nafcillin 2g IV q4 (no renal adjustment)

Extended-Spectrum Penicillins

- Piperacillin/Tazobactam (Zosyn®)
 - Sodium content 1.85 mEq per gram
 - Dosing:
 - Serious infection/Pneumonia: 4.5g IV q6
 - Other infections: 3.375g IV q6
- Ticarcillin/Clavulanic Acid (Timentin®)
 - Sodium content 5.2 mEq per gram
 - 2nd Line agent for Stenotrophomonas maltophilia

Cephalosporins

- Bactericidal cell-wall synthesis inhibitors
- DO NOT treat Enterococcus spp.
- Gram(+) activity generally decreases with each generation
- Gram(-) activity increases with generation
- Weak anaerobic activity with 2nd generation

Cephalosporin Spectrum of Activity

1. **1st Generation (EX: Cefazolin)**
 - Excellent MSSA activity
 - Some Gram(+) activity – E. coli, Klebsiella
 - Major role in surgical prophylaxis
2. **2nd Generation (EX: Cefotetan, Cefoxitin)**
 - Good Gram(-), moderate Gram(+) & anaerobic coverage
 - Primarily used for abdominal surgery prophylaxis
3. **3rd Generation (EX: Ceftriaxone, Ceftazidime)**
 - 1st β-lactams with Pseudomonas coverage (Ceftazidime)
 - Ceftazidime selects out multi-drug resistant organisms (MDR Gram(-), VRE, C. difficile, MRSA)
 - Ceftriaxone –
 - Excellent CSF penetration
 - Excellent Streptococcus pneumoniae drug
4. **4th Generation (EX: Ceftazime)**
 - Excellent MSSA and Pseudomonas spp coverage
Cephalosporins

- Major Adverse Events
 - Rash
 - Anaphylaxis
 - Seizures
- Cross-Sensitivity with Penicillins
 - 1-10%
 - Concern if patient has history of anaphylaxis

Carbapenems

- Bactericidal cell-wall synthesis inhibitors
- Broadest-spectrum antimicrobials available
- Stable against most β-lactamases
- Some intrinsic Resistance:
 - *Enterococcus faecium*
 - *MRSA*
 - *Stenotrophomonas maltophilia*
 - *Burkholderia spp.*
 - PCN-resistant *S. pneumoniae*

Carbapenems

- 4 Drugs:
 - Imipenem/Cilastatin (*Primaxin*®)
 - Meropenem (*Merrem*®)
 - Ertapenem (*Invanz*®)
 - Doripenem (*Doribax*®)
- Incomplete class cross-resistance
- Major Adverse Events:
 - Seizures (Imi >> Mero >> Dori)
 - Rash
 - Anaphylaxis
- Cross-Sensitivity with Penicillins < 1%

Monobactam

- Bactericidal cell wall synthesis inhibitor
- Pure Gram(-) coverage –
 - including *Pseudomonas*
- No cross-sensitivity with penicillins / cephalosporins
- Major Adverse Events:
 - Rash
 - GI upset
 - Injection-site thrombophlebitis

Fluoroquinolones

- DNA synthesis inhibitors:
 - DNA-gyrase inhibitor in Gram(-) bacteria
 - Topoisomerase IV inhibitor in Gram(+) bacteria
- Concentration dependant killers
 - Gram(-) AUC:MIC Goal ≥ 125:1
 - Gram(+) AUC:MIC Goal ≥ 10:1

Fluoroquinolones

- Anti-Pseudomonal Agents:
 - Ciprofloxacin
 - Levofloxacin (non-formulary)
Fluoroquinolones

- **Gram(+) Coverage:**
 - Class has POOR *Staphylococcus aureus* drugs
 - Select out MRSA
 - Newer agents excellent *Strep. pneumoniae* coverage
- **Major Adverse Events:**
 - QT Prolongation
 - Moxifloxacin >>> levofloxacin >>> ciprofloxacin
 - *C. difficile* colitis
- **Drug Interactions:** phenytoin, warfarin

Aminoglycosides

- **Inhibit bacterial protein synthesis at 30S & 50S ribosomal subunits**
- **Concentration-dependant killers**
 - Goal Peak : MIC = 10 : 1
 - Post-antibiotic effect

Aminoglycosides

- **Place in Therapy:**
 - Treatment of Gram(-) Infections
 - Gentamicin for Gram(+) synergy in combination with a β-lactam or vancomycin
- **Major Adverse Events:**
 - Nephrotoxicity (high trough)
 - Ototoxicity (prolonged duration of therapy)
- **Drug Interactions:**
 - Neuromuscular blockers

Aminoglycosides

- **Gentamicin/Tobramycin**
 - Gram(-) non-Burn: 7mg/kg IV q24
 - Gram(-) Burn: 2.5-3mg/kg IV q8-12h
 - Gentamicin Gram(+) Synergy: 1mg/kg IV q8
- **Amikacin**
 - Gram(-) non-Burn: 15-20mg IV Q24
 - Gram(-) Burn: 7.5 mg/kg IV Q8

Dose Calculator: www.surgicalcriticalcare.net

Aminoglycosides

- **Colistin (Polymyxin E)**
 - Reserved for multi-drug resistant Gram(-) orgs
 - Nebulized: 150mg inhaled q12h
 - IV (VERY nephrotoxic): 2.5 mg/kg IV q8-12
- **Polymyxin B**
 - Also reserved for multi-drug resistant orgs
 - IV: 15,000-25,000 units/kg/day divided q12
- **No way to monitor levels for IV polymyxins**

Aminoglycosides

- **Polymyxin B & Colistin**
 - **Major Adverse Events:**
 - Nephrotoxicity
 - Neurotoxicity
 - **Drug Interactions:**
 - Neuromuscular blockers
Vancomycin
- Inhibits bacterial cell wall synthesis
- Time-dependant killer (time above MIC)
 - Some concentration-dependant characteristics
- Uses:
 - IV: treatment of Gram(+) infections
 - PO: treatment of *C. difficile* colitis

Linezolid (Zyvox®)
- Oxazolidindione – inhibits bacterial protein synthesis
 - Bacteriostatic: *Enterococcus*, *Staphylococcus*
 - Bacteriocal: *Streptococcus*
- DOC: VRE
- Large volume of distribution
- Dosing: 600mg IV/PO q12

Synercid®
- Quinupristin/Dalfopristin – inhibits bacterial protein synthesis
- Major organisms:
 - VRE
 - MSSA & MRSA
 - *Streptococcus pyogenes*
- Dose:
 - 7.5mg/kg IV q8-12 (no renal adjustment)

Vancomycin
- Dosing:
 - IV: 20mg/kg IV x1, then 15mg/kg IV q8-12h
 - PO: 125-250mg PO q6h
- Major Adverse Events:
 - Red Man Syndrome – slow down infusion
 - Not nephrotoxic – but accumulates

Linezolid (Zyvox®)
- Major Adverse Events
 - Thrombocytopenia/Pancytopenia
 - Blurred vision
 - Serotonin Syndrome
- Drug Interactions
 - Selective Serotonin Reuptake Inhibitors (SSRIs)

Synercid®
- Major Adverse Events
 - Hyperbilirubinemia
 - Infusion site reaction
 - Infusion-related arthralgias/myalgias
- Drug Interactions
 - No significant
Daptomycin
- Cell membrane disruption leading to inhibition of DNA/RNA/protein synthesis
- Bacteremia, Endocarditis, Skin/Soft Tissue infections
- Does NOT treat pneumonia!
- Spectrum of Activity:
 - MRSA
 - VRE

Daptomycin
- Dose:
 - 4-6mg/kg IV q24
 - Adjust for renal dysfunction
- Major Adverse Events:
 - Anemia
 - Constipation/NV
 - Injection-site reactions

Bactrim®
- Sulfamethoxazole/Trimethoprim
- Interferes with bacterial folic acid synthesis
- Drug of Choice:
 - Stenotrophomonas maltophilia
 - Pneumocystis carinii pneumonia (PCP)
 - Alternative for MRSA

Bactrim®
- Dosing:
 - Based on Trimethoprim (TMP) component
 - UTI: Bactrim® DS (800/160) 1 po bid
 - Severe Infections (MRSA/PCP/Stenotrophomonas):
 - 5 mg TMP/kg IV/PO/PT q6-8h
 - Adjust for renal dysfunction
- Major Adverse Events:
 - Stevens-Johnson Syndrome
 - Rash
 - Hyponatremia (IV)
 - Hyperkalemia
 - GI upset (large PO doses)

Tetracyclines
- Inhibit bacterial protein synthesis
- Bacteriostatic
- Spectrum of Activity
 - Gram (+) including MRSA
 - Gram (-)
 - Atypicals (Mycoplasma, Chlamydia, Rickettsia)
 - Alternative for H. pylori
Tetracyclines

- **3 Agents:**
 - Tetracycline 250-500mg po q6
 - Doxycycline 100mg po/IV q12
 - Minocycline

- **Major Adverse Events:**
 - Photosensitivity
 - Teeth/enamel discoloration in children
 - Hepatotoxicity

Tigecycline

- **A glycycline – protein synthesis inhibitor**
- **Spectrum of Activity:**
 - Gram (+) including MRSA and VRE
 - Gram (-) including E. coli & Klebsiella
 - Anaerobes
- **Does not cover:**
 - *Pseudomonas spp.*
 - *Proteus spp.*

Macrolides

- **Inhibit RNA-dependant protein synthesis**
- **Spectrum of Activity**
 - Gram (+) – including MSSA
 - Gram (-) (Haemophilus spp)
 - Atypical (Chlamydia spp, Mycoplasma, Legionella)
- **Several Agents:**
 - Erythromycin
 - Clarithromycin
 - Azithromycin

Clindamycin

- **Inhibits bacterial protein synthesis**
- **Spectrum of Activity**
 - Gram (+) – MSSA, Streptococcus, some MRSA
 - Anaerobes
- **Excellent alternative for Penicillin-allergic patients**
- **Major Adverse Events:**
 - Diarrhea
Metronidazole

- Interacts with DNA causing strand breakage and ultimately inhibits protein synthesis
- Spectrum of Activity: Anaerobes
 - *Clostridium difficile* diarrhea
- Major Adverse Events:
 - N/V
 - Diarrhea
- Dosing:
 - *C. difficile*: 500mg PO/PT q6

Antimicrobial Resistance

- Unsuppressed production of β-lactamase
 - AMPc
 - ESBL
- Alteration in bacterial cell membrane
 - Vancomycin-resistant *Enterococcus*
- *Pseudomonas spp.*
 - Aminoglycoside-altering enzymes
 - Efflux pump – pump out drug
 - Alter porin channel – drug can't get in

Take Home Points

- Penicillins – increase Gram(-) and maintain Gram(+)
- Addition of β-lactamase inhibitor = anaerobic coverage
- Cephalosporins – avoid 3rd generation
- Carbapenems – reserve for last resort
- Vancomycin – aim high trough
- Pharmacodynamic-based drug dosing